Atmospheric fate of methacrolein. 2. Formation of lactone and implications for organic aerosol production.

نویسندگان

  • Henrik G Kjaergaard
  • Hasse C Knap
  • Kristian B Ørnsø
  • Solvejg Jørgensen
  • John D Crounse
  • Fabien Paulot
  • Paul O Wennberg
چکیده

We investigate the oxidation of methacryloylperoxy nitrate (MPAN) and methacrylicperoxy acid (MPAA) by the hydroxyl radical (OH) theoretically, using both density functional theory [B3LYP] and explicitly correlated coupled cluster theory [CCSD(T)-F12]. These two compounds are produced following the abstraction of a hydrogen atom from methacrolein (MACR) by the OH radical. We use a RRKM master equation analysis to estimate that the oxidation of MPAN leads to formation of hydroxymethyl-methyl-α-lactone (HMML) in high yield. HMML production follows a low potential energy path from both MPAN and MPAA following addition of OH (via elimination of the NO(3) and OH from MPAN and MPAA, respectively). We suggest that the subsequent heterogeneous phase chemistry of HMML may be the route to formation of 2-methylglyceric acid, a common component of organic aerosol produced in the oxidation of methacrolein. Oxidation of acrolein, a photo-oxidation product from 1,3-butadiene, is found to follow a similar route generating hydroxymethyl-α-lactone (HML).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere.

Methacryloyl peroxynitrate (MPAN), the acyl peroxynitrate of methacrolein, has been suggested to be an important secondary organic aerosol (SOA) precursor from isoprene oxidation. Yet, the mechanism by which MPAN produces SOA through reaction with the hydroxyl radical (OH) is unclear. We systematically evaluate three proposed mechanisms in controlled chamber experiments and provide the first ex...

متن کامل

Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) ...

متن کامل

Reactive intermediates revealed in secondary organic aerosol formation from isoprene.

Isoprene is a significant source of atmospheric organic aerosol; however, the oxidation pathways that lead to secondary organic aerosol (SOA) have remained elusive. Here, we identify the role of two key reactive intermediates, epoxydiols of isoprene (IEPOX = beta-IEPOX + delta-IEPOX) and methacryloylperoxynitrate (MPAN), which are formed during isoprene oxidation under low- and high-NO(x) condi...

متن کامل

Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol

[1] The volatility basis set, a computationally efficient framework for the description of organic aerosol partitioning and chemical aging, is implemented in the Goddard Institute for Space Studies General Circulation Model II′ for a coupled global circulation and chemical transport model to simulate secondary organic aerosol (SOA) formation. The latest smog chamber information about the yields...

متن کامل

A review of Secondary Organic Aerosol (SOA) formation from isoprene

Recent field and laboratory evidence indicates that the oxidation of isoprene, (2-methyl-1,3-butadiene, C5H8) forms secondary organic aerosol (SOA). Global biogenic emissions of isoprene (600 Tg yr−1) are sufficiently large that the formation of SOA in even small yields results in substantial production of atmospheric particulate matter, likely having implications for air quality and climate. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 116 24  شماره 

صفحات  -

تاریخ انتشار 2012